Shape Selectivity of Middle Superior Temporal Sulcus Body Patch Neurons

نویسندگان

  • Ioannis Kalfas
  • Satwant Kumar
  • Rufin Vogels
چکیده

Functional MRI studies in primates have demonstrated cortical regions that are strongly activated by visual images of bodies. The presence of such body patches in macaques allows characterization of the stimulus selectivity of their single neurons. Middle superior temporal sulcus body (MSB) patch neurons showed similar stimulus selectivity for natural, shaded, and textured images compared with their silhouettes, suggesting that shape is an important determinant of MSB responses. Here, we examined and modeled the shape selectivity of single MSB neurons. We measured the responses of single MSB neurons to a variety of shapes producing a wide range of responses. We used an adaptive stimulus sampling procedure, selecting and modifying shapes based on the responses of the neuron. Forty percent of shapes that produced the maximal response were rated by humans as animal-like, but the top shape of many MSB neurons was not judged as resembling a body. We fitted the shape selectivity of MSB neurons with a model that parameterizes shapes in terms of curvature and orientation of contour segments, with a pixel-based model, and with layers of units of convolutional neural networks (CNNs). The deep convolutional layers of CNNs provided the best goodness-of-fit, with a median explained explainable variance of the neurons' responses of 77%. The goodness-of-fit increased along the convolutional layers' hierarchy but was lower for the fully connected layers. Together with demonstrating the successful modeling of single unit shape selectivity with deep CNNs, the data suggest that semantic or category knowledge determines only slightly the single MSB neuron's shape selectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch.

Although the visual representation of bodies is essential for reproduction, survival, and social communication, little is known about the mechanisms of body recognition at the single neuron level. Imaging studies showed body-category selective regions in the primate occipitotemporal cortex, but it is difficult to infer the stimulus selectivities of the neurons from the population activity measu...

متن کامل

The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion.

Motion is a potent cue for the perception of three-dimensional (3D) shape in primates, but little is known about its underlying neural mechanisms. Guided by recent functional magnetic resonance imaging results, we tested neurons in the fundus of the superior temporal sulcus (FST) area of two macaque monkeys (Macaca mulatta, one male) using motion-defined surface patches with various 3D shapes s...

متن کامل

Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex.

The anterior part of the macaque inferior temporal cortex, area TE, occupies a large portion of the temporal lobe and is critical for object recognition. Thus far, no relation between anatomical subdivisions of TE and neuronal selectivity has been described. Here, we present evidence that neurons selective for three-dimensional (3D) shape are concentrated in the lower bank of the superior tempo...

متن کامل

Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces.

The lower bank of the superior temporal sulcus (TEs), part of the inferior temporal cortex, contains neurons selective for disparity-defined three-dimensional (3-D) shape. The large majority of these TEs neurons respond to the spatial variation of disparity, i.e., are higher-order disparity selective. To determine whether curved boundaries or curved surfaces by themselves are sufficient to elic...

متن کامل

Three-Dimensional Shape Coding in Inferior Temporal Cortex

Neurons in the rostral lower bank of the superior temporal sulcus (TEs), part of the inferior temporal cortex, respond selectively to three-dimensional (3D) shapes. We have investigated how these neurons represent disparity-defined 3D structure. Most neurons were selective for either first-order (disparity gradients) or second-order (disparity curvature) disparities. The latter selectivity prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017